88 research outputs found

    Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    Get PDF
    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activit

    Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    Get PDF
    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity

    Glial Fibrillary Acidic Protein Autoimmunity: A French Cohort Study

    Get PDF
    Background and ObjectivesTo report the clinical, biological, and imaging features and clinical course of a French cohort of patients with glial fibrillary acidic protein (GFAP) autoantibodies.MethodsWe retrospectively included all patients who tested positive for GFAP antibodies in the CSF by immunohistochemistry and confirmed by cell-based assay using cells expressing human GFAPα since 2017 from 2 French referral centers.ResultsWe identified 46 patients with GFAP antibodies. Median age at onset was 43 years, and 65% were men. Infectious prodromal symptoms were found in 82%. Other autoimmune diseases were found in 22% of patients, and coexisting neural autoantibodies in 11%. Tumors were present in 24%, and T-cell dysfunction in 23%. The most frequent presentation was subacute meningoencephalitis (85%), with cerebellar dysfunction in 57% of cases. Other clinical presentations included myelitis (30%) and visual (35%) and peripheral nervous system involvement (24%). MRI showed perivascular radial enhancement in 32%, periventricular T2 hyperintensity in 41%, brainstem involvement in 31%, leptomeningeal enhancement in 26%, and reversible splenial lesions in 4 cases. A total of 33 of 40 patients had a monophasic course, associated with a good outcome at last follow-up (Rankin Score ≤2: 89%), despite a severe clinical presentation. Adult and pediatric features are similar. Thirty-two patients were treated with immunotherapy. A total of 11/22 patients showed negative conversion of GFAP antibodies.DiscussionGFAP autoimmunity is mainly associated with acute/subacute meningoencephalomyelitis with prodromal symptoms, for which tumors and T-cell dysfunction are frequent triggers. The majority of patients followed a monophasic course with a good outcome

    Treatment of MOG-IgG-associated disorder with rituximab: An international study of 121 patients

    Get PDF
    OBJECTIVE: To assess the effect of anti-CD20 B-cell depletion with rituximab (RTX) on relapse rates in myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD). METHODS: Retrospective review of RTX-treated MOGAD patients from 29 centres in 13 countries. The primary outcome measure was change in relapse rate after starting rituximab (Poisson regression model). RESULTS: Data on 121 patients were analysed, including 30 (24.8%) children. Twenty/121 (16.5%) were treated after one attack, of whom 14/20 (70.0%) remained relapse-free after median (IQR) 11.2 (6.3-14.1) months. The remainder (101/121, 83.5%) were treated after two or more attacks, of whom 53/101 (52.5%) remained relapse-free after median 12.1 (6.3-24.9) months. In this 'relapsing group', relapse rate declined by 37% (95%CI=19-52%, p<0.001) overall, 63% (95%CI=35-79%, p = 0.001) when RTX was used first line (n = 47), and 26% (95%CI=2-44%, p = 0.038) when used after other steroid-sparing immunotherapies (n = 54). Predicted 1-year and 2-year relapse-free survival was 79% and 55% for first-line RTX therapy, and 38% and 18% for second-/third-line therapy. Circulating CD19+B-cells were suppressed to <1% of total circulating lymphocyte population at the time of 45/57 (78.9%) relapses. CONCLUSION: RTX reduced relapse rates in MOGAD. However, many patients continued to relapse despite apparent B-cell depletion. Prospective controlled studies are needed to validate these results

    Human Flt3L Generates Dendritic Cells from Canine Peripheral Blood Precursors: Implications for a Dog Glioma Clinical Trial

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF.Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation.These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials

    Relapses in Patients Treated with High-Dose Biotin for Progressive Multiple Sclerosis

    Get PDF
    High-dose biotin (HDB) is a therapy used in non-active progressive multiple sclerosis (PMS). Several reports have suggested that HDB treatment may be associated with an increased risk of relapse. We aimed to determine whether HDB increases the risk of clinical relapse in PMS and describe the characteristics of the patients who experience it. We conducted a French, multicenter, retrospective study, comparing a group of PMS patients treated with HDB to a matched control group. Poisson regression was applied to model the specific statistical distribution of the annualized relapse rate (ARR). A propensity score (PS), based on the inverse probability of treatment weighting (IPTW), was used to adjust for indication bias and included the following variables: gender, primary PMS or not, age, EDSS, time since the last relapse, and co-prescription of a DMT. Two thousand six hundred twenty-eight patients treated with HDB and 654 controls were analyzed with a follow-up of 17 ± 8 months. Among them, 148 validated relapses were observed in the group treated with biotin and 38 in the control group (p = 0.62). After adjustment based on the PS, the ARR was 0.044 ± 0.23 for the biotin-treated group and 0.028 ± 0.16 for the control group (p = 0.18). The more relapses there were before biotin, the higher the risk of relapse during treatment, independently from the use of HDB. While the number of relapses reported for patients with no previous inflammatory activity receiving biotin has gradually increased, the present retrospective study is adequately powered to exclude an elevated risk of relapse for patients with PMS treated with HDB.Observatoire Français de la Sclérose en Plaque

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR&nbsp;=&nbsp;2.05, 95%CI&nbsp;=&nbsp;1.39–3.02, p&nbsp;&lt;&nbsp;0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR&nbsp;=&nbsp;0.42, 95%CI&nbsp;=&nbsp;0.18–0.99, p&nbsp;=&nbsp;0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Interleukin-6 receptor blockade in treatment-refractory MOG-IgG-associated disease and neuromyelitis optica spectrum disorders

    Get PDF
    BACKGROUND AND OBJECTIVES: To evaluate the long-term safety and efficacy of tocilizumab (TCZ), a humanized anti-interleukin-6 receptor antibody in myelin oligodendrocyte glycoprotein-IgG-associated disease (MOGAD) and neuromyelitis optica spectrum disorders (NMOSD). METHODS: Annualized relapse rate (ARR), Expanded Disability Status Scale score, MRI, autoantibody titers, pain, and adverse events were retrospectively evaluated in 57 patients with MOGAD (n = 14), aquaporin-4 (AQP4)-IgG seropositive (n = 36), and seronegative NMOSD (n = 7; 12%), switched to TCZ from previous immunotherapies, particularly rituximab. RESULTS: Patients received TCZ for 23.8 months (median; interquartile range 13.0-51.1 months), with an IV dose of 8.0 mg/kg (median; range 6-12 mg/kg) every 31.6 days (mean; range 26-44 days). For MOGAD, the median ARR decreased from 1.75 (range 0.5-5) to 0 (range 0-0.9; p = 0.0011) under TCZ. A similar effect was seen for AQP4-IgG+ (ARR reduction from 1.5 [range 0-5] to 0 [range 0-4.2]; p < 0.001) and for seronegative NMOSD (from 3.0 [range 1.0-3.0] to 0.2 [range 0-2.0]; p = 0.031). During TCZ, 60% of all patients were relapse free (79% for MOGAD, 56% for AQP4-IgG+, and 43% for seronegative NMOSD). Disability follow-up indicated stabilization. MRI inflammatory activity decreased in MOGAD (p = 0.04; for the brain) and in AQP4-IgG+ NMOSD (p < 0.001; for the spinal cord). Chronic pain was unchanged. Regarding only patients treated with TCZ for at least 12 months (n = 44), ARR reductions were confirmed, including the subgroups of MOGAD (n = 11) and AQP4-IgG+ patients (n = 28). Similarly, in the group of patients treated with TCZ for at least 12 months, 59% of them were relapse free, with 73% for MOGAD, 57% for AQP4-IgG+, and 40% for patients with seronegative NMOSD. No severe or unexpected safety signals were observed. Add-on therapy showed no advantage compared with TCZ monotherapy. DISCUSSION: This study provides Class III evidence that long-term TCZ therapy is safe and reduces relapse probability in MOGAD and AQP4-IgG+ NMOSD

    AAV ancestral reconstruction library enables selection of broadly infectious viral variants

    Full text link
    Adeno-associated virus (AAV) vectors have achieved clinical efficacy in treating several diseases. Enhanced vectors are required to extend these landmark successes to other indications, however, and protein engineering approaches may provide the necessary vector improvements to address such unmet medical needs. To generate new capsid variants with potentially enhanced infectious properties, and to gain insights into AAV’s evolutionary history, we computationally designed and experimentally constructed a putative ancestral AAV library. Combinatorial variations at 32 amino acid sites were introduced to account for uncertainty in their identities. We then analyzed the evolutionary flexibility of these residues, the majority of which have not been previously studied, by subjecting the library to iterative selection on a representative cell line panel. The resulting variants exhibited transduction efficiencies comparable to the most efficient extant serotypes, and in general ancestral libraries were broadly infectious across the cell line panel, indicating that they favored promiscuity over specificity. Interestingly, putative ancestral AAVs were more thermostable than modern serotypes and did not utilize sialic acids, galactose, or heparan sulfate proteoglycans for cellular entry. Finally, variants mediated 19–31 fold higher gene expression in muscle compared to AAV1, a clinically utilized serotype for muscle delivery, highlighting their promise for gene therapy
    corecore